build.mk Homepage
Forum Home Forum Home > Останати теми > Останати теми > Наука и технологија
  Active Topics Active Topics
  FAQ FAQ  Forum Search   Register Register  Login Login

Космологија

Bookmark and Share
 Post Reply Post Reply Page  <1 7891011 17>
Author
Message
  Topic Search Topic Search  Topic Options Topic Options
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #161 Posted: 21-Nov-2013 at 12:31



First ever comet material found on Earth

A team in South Africa has discovered the first definitive evidence of a comet strike on Earth some 28 million years ago.

It’s believed to have blown up over what is now Egypt, heating up the Sahara sand to a temperature of up to 2000 degrees Celcius, annihilating everything in its path.

“Comets are unique, comets are extraordinary because they carry very pristine material from our outer solar system and well beyond. So, you literally have a travelling chemical factory, which enters our Earth’s atmosphere and explodes. The comet explodes, it shatters glass, it creates glass – molten glass – there is this lake of fire which creates a blast area of 6,000 square kilometers,” says Professor David Block.

A specimen of the glass is on display in Johannesburg, together with an unusual rock collected in the Sahara 20 years ago. It is filled with microscopic black diamonds, believed to be part of a comet’s nucleus.

The core of a comet is made up of material formed at the same time as our own solar system four and a half billion years ago. Scientists hope this discovery could help unlock some of the secrets of the formation of our solar system.

“NASA and ESA (European Space Agency) generally spend billions of dollars in designing spacecraft which can either send an impactor into the very nucleus of a comet. I think the incredible point about this discovery too is that you don’t need to go into space to collect the material, the material is right here,” said Professor Block.

Until now, scientists had found only grains of cometary material in Earth’s atmosphere and in carbon-rich dust in Antarctic ice.
http://www.euronews.com/2013/10/16/first-ever-comet-material-found-on-earth/





Edited by +Protagorist - 15-Sep-2015 at 08:46
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #162 Posted: 24-Nov-2013 at 20:07
 
кога веќе детектирале нова група неутрина на антарик [1] ред е и тука да ги спомнеме

Comet clue to missing neutrinos - 15 June 1996

IN ITS youth the Sun may have swallowed vast numbers of asteroids and comets, leaving its surface enriched with heavy elements, according to a British astronomer. Mark Bailey of the Armagh Observatory in Northern Ireland says that his finding could radically alter astronomers' ideas about the Sun's life history. It could also explain why tiny particles called neutrinos, created by nuclear reactions in the Sun's core are detected at Earth at a lower rate than expected.

Bailey, who studies near-Earth asteroids and comets, notes that far more comets and asteroids are nudged into Earth-crossing orbits than anyone thought until a few years ago. "The natural endpoint of bodies moving inwards through the Solar System is to crash into the Sun," says Bailey. "It is now recognised that the Sun is being bombarded by about ten times as much material as anyone suspected five years ago."

Today, the amount of material ... http://www.newscientist.com/article/mg15020343.200-science--comet-clue-to-missing-neutrinos.html

Neutrinos – the next big small thing - 10 September 2012

"UNEASY lies the head that wears a crown," wrote Shakespeare. The same could be said today of the standard model of particle physics, our most successful description of the building blocks of matter and their interactions. The recent discovery of a particle that looks very much like the Higgs boson stands as the theory's crowning achievement, validating a prediction made nearly four decades ago and filling the model's last major gap. Yet we are as eager as ever to knock it from its throne, to discover the new physics that must surely supersede it. "The standard model is particle physics," says Nobel prizewinning physicist Jack Steinberger. "But there are many unanswered questions that are extremely elusive at the moment."

Those questions include the nature of dark matter - the mysterious, invisible material thought to make up more than 80 per cent of the mass of the universe. Then there is dark energy, the stuff reckoned to be causing the universe's expansion to accelerate. In what must rank as our worst prediction, particle physics overestimates dark energy's magnitude by a factor of 10120. The standard model also cannot explain how matter survived the big bang, or how gravity fits into the picture. It is riddled with so-called "free parameters", troublingly arbitrary numbers that have to be fed into the theory by hand, for example to set the strength of the interactions it describes.

Researchers had hoped that the Higgs would lead to the new physics that is needed to explain away these difficulties. But with the Higgs behaving largely as expected so far, the real key to the kingdom beyond the standard model may lie with a different sort of particle: neutrinos.

Neutrinos hit the headlines in September last year when the OPERA experiment under Gran Sasso mountain in Italy clocked them apparently travelling faster than the speed of light, an activity forbidden by Einstein's special theory of relativity. Six months later, the finding was traced to a glitch in the experiment. Even so, there is plenty more to say and learn about these beguiling particles.

Ghostly, mysterious and antisocial - they rarely deign to interact with the world of common matter around them - much of what is known about neutrinos lies outside the standard model. The three neutrinos we know about fit neatly enough. They pair with the electron and its two heavier cousins, the muon and the tau. A trio of antineutrinos also exists, which pair with the positively charged antiparticles of the electron, muon and tau to complete the extended lepton family (see chart). But at the outset, the standard model wrongly assumed neutrinos have no mass, and even now it cannot specify the masses they do have. It did not foresee their ability to shape-shift from one type into another, nor the fact that there might be more than three of them.

Many new theories hope to fill in those gaps, including grand unified theories, supersymmetry and string theory. One of them might gain traction by explaining why neutrinos are so very weird. Neutrinos themselves might in turn tell us which theory is on the right track.

Despite their aloof nature, neutrinos have a long history as problem-solving particles. Physicist Wolfgang Pauli conceived of them in 1930 in order to conserve energy and momentum in radioactive beta decays. More recently, neutrinos have moved to the forefront of our efforts to explain how matter came to dominate antimatter in our universe. "Neutrinos allow you to access another world for the simple reason that they are not so strongly interacting with us in the visible world," says theorist Patrick Huber at Virginia Tech in Blacksburg.

Flavour change

The first cracks in the standard model's description of neutrinos came 15 years ago. Up until then, most physicists assumed - as did the theory - that neutrinos are massless. However in 1998, the Super-Kamiokande experiment in Japan proved that this wasn't the case (see photo). Neutrinos are emitted or absorbed with electron, muon or tau flavour, like single scoops of ice cream. Super-Kamiokande studied muon neutrinos from cosmic rays striking the atmosphere and found they could morph into electron neutrinos on their way through Earth. Other experiments investigating neutrinos created in nuclear reactors, particle accelerators and nuclear decay processes in the sun have confirmed that, however they start out, neutrinos shape-shift into a tutti-frutti mixture of flavours on their journey, with each scoop containing a hint of all three. According to quantum mechanics, the only way such morphing can happen is if neutrinos have mass. Indeed, we now understand that each of the three neutrino flavours propagates through space as a different, constantly changing mixture.

That leaves us with a conundrum. "Neutrino mass tells us that the standard model needs to be extended, but it doesn't tell us how," says theoretical physicist Lawrence Krauss at Arizona State University in Tempe. In contrast, some grand unified theories - which go further by attempting to unite all the forces of nature except gravity - do predict neutrinos with mass, so pinning down the actual masses could tell theorists which theory to pursue. "There have been decades where people have speculated about grand theories which can explain the masses in various ways," says Joe Formaggio at the Massachusetts Institute of Technology, "but if you're going to come up with a theory that explains masses, you'd better have the masses."

Measuring the mass of an invisible particle that can sail unhindered through a slab of lead a light year thick is easier said than done. Catching neutrinos is a matter of patience, of watching long enough with big enough detectors until one eventually interacts. To do it, we have been stalking neutrinos at two radically different scales - the subatomic and the cosmic. Seventy years ago, Enrico Fermi envisioned measuring neutrino mass by measuring radioactive beta decays. In a typical beta decay, a neutron inside an atomic nucleus turns into a proton while spitting out an electron and an electron antineutrino. Although the antineutrino is undetectable directly, Fermi outlined how its mass could be inferred from the energy and momentum of the accompanying electron. Neutrinos, however, are so light that it has been impossible to achieve the sensitivity needed. An exquisitely sensitive experiment being built at the Karlsruhe Institute of Technology in Germany, called KATRIN, may yet win the race to accomplish that in the next few years.

Meanwhile, the tightest limits on neutrino mass come from the cosmos: the particles' fingerprints can be found on the mix of elements created in the big bang and supernovae, on the expansion rate of the universe, on the cosmic microwave background (CMB), and on how matter coalesced into galaxies and galaxy clusters.

A combination of cosmological measurements reveal that the sum of the three neutrino masses cannot exceed more than about 0.3 electronvolts (eV) - more than a million times smaller than the next lightest particle, the electron. "To me it's exhilarating that you can look at all the galaxies and clusters in the universe and detect the mass of this tiny particle," says Scott Dodelson, a cosmologist at Fermilab in Batavia, Illinois. Frank Close of the University of Oxford thinks that message should be taken to heart. "We don't appreciate the magic of what we're doing," he says. Early next year, analysis of observations of the CMB from the Planck space observatory should significantly hone our limits on the sum of the neutrino masses.

Breaking that sum down into the masses of the individual mass states is made difficult by their constant shape-shifting. Measuring the shifts allows us to draw inferences, and an analysis of the best existing data puts the mass of the lightest state at about 0.05 eV.

That still leaves a puzzle. "Why it is that neutrinos are so anomalously light compared with everything else is bizarre," says Close. "It's as if they want to be nothing and yet weren't allowed to be."

As if the three "normal" neutrinos were not antisocial enough, one theory suggests they may be shadowed by one or more "sterile" neutrinos. Unlike regular neutrinos, which feel the weak force inside nuclei and so occasionally interact with particles contained there, sterile neutrinos feel only gravity and so fail to interact with ordinary matter at all. Sterile neutrinos fascinate theorists since their discovery would break away from the standard model, and help explain not only dark matter but perhaps why there is matter at all (New Scientist, 18 February, p 8). "They may well participate in forces beyond the standard model that we have not discovered yet," says theoretical physicist Boris Kayser of Fermilab.

Matter wins

Over the years, experiments have spun off a string of anomalies that point to one or more sterile neutrinos with a small mass of about 1 eV (see "Strange surplus"). Predicted neither by the standard model nor by grand unified theories, their confirmation would hand researchers just the kind of new physics they are looking for.

The recent publication by an international group of almost 200 neutrino physicists of a "white paper" on sterile neutrinos reflects the interest they have stirred up. It describes some 21 experiments that are running, planned or proposed to try to track them down. "A large number of institutions are getting very excited about this," says Carlo Rubbia, a Nobel prizewinning particle physicist at CERN. "We hope progress is coming fast."

Along with sterile neutrinos, researchers are stalking another prize - a difference between neutrinos and antineutrinos that could help explain why our universe is dominated by matter, and so why we are here to notice. According to our best understanding of cosmology and particle physics, matter and antimatter were created in equal amounts at the big bang. What followed was a maelstrom of interactions, and in this melee matter and antimatter should have annihilated to leave nothing but a cosmos full of light. Clearly this hasn't happened. "We have no good explanation for why the universe is made entirely of matter," says Janet Conrad at MIT. "It's a very embarrassing problem."

"It's perhaps the most fundamental question we can ask about the universe, and neutrinos can provide a window into that question," says Alexandre Sousa at Harvard University.

That window is a theory called leptogenesis, and it relies on a phenomenon called CP violation. What this means is that if you look at a particle reaction, and then the same reaction viewed in a mirror and with particles swapped for their antiparticles, you will see the two reactions proceeding at slightly different rates. It has been spotted in lab experiments with composite particles made up of quarks, but the imbalance seen there is not sufficient to explain why the antimatter created in the big bang vanished. The idea of leptogenesis is that in the first microseconds after the big bang, the young, hot universe contained extremely heavy, unstable sterile neutrinos that soon decayed, some into leptons and the remainder into their antimatter counterparts, but at unequal rates. This imbalance need only be tiny - one part in a billion. But it would mean that when the matter mopped up all the antimatter, enough leptons remained behind to eventually transform into the protons and neutrons that went on to form stars, galaxies and planets.

Heavy sterile neutrinos and their standard-model counterparts are thought to have been inextricably linked in the early universe: according to a theoretical process known as the see-saw mechanism, neutrinos acquired their puzzlingly light masses by interacting with their heavyweight counterparts when the universe was extremely hot. If the picture of leptogenesis is true, we should see neutrinos and antineutrinos behaving in a slightly imbalanced way too.

So far, experimentalists have not uncovered any convincing neutrino CP anomalies. Fermilab's MINOS experiment created a buzz in 2010 when it found slight differences in the way that muon neutrinos and their antineutrino counterparts shape-shift as they travel over long distances, but by 2012, with more data, the difference disappeared.

Still, the prospects for glimpsing CP violation are good. Earlier this year, researchers at the Daya Bay Reactor Neutrino Experiment, based in southern China, measured a crucial parameter called theta13, which describes how neutrinos change flavour. A low theta13 would have made CP violation hard to find, and zero would have ruled it out. To the researchers' delight, however, the value turned out to be surprisingly large, implying that future experiments have a good chance of finding CP violation. "We now think we have the big picture," says André de Gouvêa, a theorist at Northwestern University in Evanston, Illinois. A first glimpse of the detail may come from Fermilab's Nova experiment, touted to have the best chance yet to detect neutrino CP violation. "It's the one experiment that can look at this over the next decade," says Sousa.

Even if neutrinos show CP violation, it is only part of the story. Leptogenesis only works if neutrinos, including the sterile variety, are so-called Majorana particles. This means that, unlike most other particles in the standard model, they are identical to their antiparticles and get their mass through the see-saw mechanism.

If this is indeed the case, we would expect to observe a process known as neutrinoless double beta decay that the standard model frowns upon. In normal beta decay, a neutron changes into a proton and emits an electron and an electron antineutrino. Some nuclei can undergo two such decays at once, in which case we would expect two antineutrinos to be emitted. If these antineutrinos are identical to neutrinos, however, they will annihilate each other on emission, and the reaction will produce just two protons and two electrons.

"Neutrinoless double-beta decay is the smoking gun that neutrinos are Majorana particles," says Alan Poon of Lawrence Berkeley National Laboratory in California. "It would give lots of tips to theorists on how to update the standard model, and it ties back to the very early universe - how we got more matter than antimatter."

Chasing the dream

Another allure of neutrinoless double-beta decay experiments is that the mass of the neutrino influences the reaction rate, allowing us to pin down this quantity too. "You get two very interesting pieces of physics - the mass of the lightest neutrino and the fact that neutrinos are Majorana particles," says Art McDonald, a particle astrophysicist at Queen's University in Kingston, Ontario, Canada.

So far, only one group claims to have seen neutrinoless double-beta decay, a Russian-German collaboration that first published their study of germanium decays in 2002. No other experiment has replicated their results. New findings from the Enriched Xenon Observatory, near Carlsbad, New Mexico, using a bath of liquid xenon, show that if neutrinoless double-beta decay exists at all, it is extremely rare - perhaps vanishingly so (Physical Review Letters, vol 109, p 032505). Nevertheless, so great would be the prize of observing it that it remains the object of multiple research projects.

Many questions about neutrinos remain open. Sheldon Glashow, a Nobel prizewinning theorist at Harvard University, says what is needed are more and better experiments. "I don't think there's much to do until we have some experimental guidance," he says.

Francis Halzen, who heads the IceCubeMovie%20Camera Neutrino Observatory, an experiment to measure cosmic neutrinos passing through Earth that is situated under the ice at the South Pole, agrees. "We chase new physics connected with neutrino oscillation. We may discover that neutrinos have non-standard-model interactions. We may discover there are sterile neutrinos mixing in with the three standard neutrinos," he says, "or something totally out of the blue."

The problem, they point out, is resources. Among the next experiments that have been proposed is the Long Baseline Neutrino Experiment, managed by Fermilab. It would be an intense neutrino beam fired hundreds of kilometres through Earth's mantle to a large detector weighing many thousands of tonnes. Another is the UK-to-Japan Neutrino Factory, which would create an intense beam of neutrinos and ping it to a detector on the other side of the world. Both would take decades to build and cost many billions of dollars.

It's worth the money and effort, says Rubbia. "This is one of the areas in which new discoveries are possible, but we don't know from which direction these discoveries will come. So we have to take a very courageous view to find out what's coming next."

Strange surplus

It was a few flashes of light two decades ago that started the story of the biggest neutrino anomaly of them all. They occurred at the Liquid Scintillator Neutrino Detector (LSND) at Los Alamos National Laboratory in New Mexico, and each represented the passage of a neutrino through the detector's massive tank of mineral oil. Those flashes revealed that more muon antineutrinos than expected had changed into electron antineutrinos en route from a particle accelerator 30 metres away.

The leading explanation for the surplus is that on their way they briefly morph into undetectable "sterile" neutrinos, giving them another route to effect their transformation. By 1998, when LSND ended, the excess was still there and had reached a significance of 3.8 standard deviations - not enough to claim an outright discovery of sterile neutrinos, but sufficient to claim hints of them at work. "We were left with a very surprising result," says Bill Louis at Los Alamos, who worked on the experiment.

Still, the LSND anomaly would probably have faded into oblivion had it not been bolstered by a series of similar findings.

Researchers at Fermilab in Batavia, Illinois, built the MiniBooNE experiment to check LSND's results. It started by looking for muon neutrinos morphing into electron neutrinos, although at higher energies and over a longer distance than LSND. Then it switched to antineutrinos like LSND, The details are complicated, but it too found hints that sterile neutrinos might exist.

A completely different experiment has also suggested the existence of sterile neutrinos. One of the early experiments to detect neutrinos streaming from the sun used tanks of gallium, which solar neutrinos could transmute into a detectable germanium isotope. Researchers calibrated their detectors using known radioactive sources. In two separate projects, based underground in Italy and Russia, detectors snared 15 per cent fewer neutrinos than expected from models of how many should have been produced - the so-called GALLEX and SAGE anomalies. Again, a likely explanation is that some neutrinos shape-shifted into an undetectable form.

BIG SPLASH

Then there are the newly discovered anomalies at nuclear reactors. Improved calculations of the way nuclei capture neutrinos, and how many neutrinos nuclear reactors generate, indicate that several experiments over the past three decades should have found on average 7 per cent more neutrinos than they actually did. "When we discovered this anomaly, we were not looking for sterile neutrinos at all," says Thierry Lasserre, a neutrino physicist at CEA, in Saclay, France. "It was a big surprise to us."

Louis checks off MiniBooNE, SAGE, GALLEX and the reactor anomalies. "All of those appear to be consistent with LSND," he says. "This has given additional incentive to look into sterile-neutrino models."

Janet Conrad at the Massachusetts Institute of Technology and her colleagues have just published a very promising model which proposes three sterile neutrinos paralleling the three flavoured ones. The new model explains most of the anomalies found close to neutrino sources. "You can't assume that there's just one sterile neutrino," Conrad says. "We put in three plus three and get a very good fit for both the disappearance and appearance data. We think that's going to be very big and splashy."

Lasserre proposes more experiments to settle the problem. He wants to insert an intense radioactive source into the heart of an existing detector. If light sterile neutrinos with a mass of about 1 electronvolt are produced by such a source, they should oscillate relatively fast into and out of detectable flavours. "You would see these beautiful oscillating patterns," says Lasserre. "If you manage to do this, either you find something or you are sure there is no sterile neutrino." He hopes to see those oscillations or "kill the anomalies" within five years.

HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #163 Posted: 24-Nov-2013 at 23:43

Originally posted by +Protagorist

кога веќе детектирале нова група неутрина на антарик [1] ред е и тука да ги спомнеме


земи си ножето распарај срцето таму ќеси најдеш искрена лубов, и ето го прејкоа антартик и не се залубија

Highest Energy Neutrino Ever Observed

Pin It Credit: IceCube Collaboration
This image shows the highest energy neutrino ever observed (1.14 petaelectronvolts), which scientists named 'Ernie,' as seen by the IceCube Neutrino Observatory at the South Pole on Jan. 3, 2012. Image released Nov. 21, 2013 - http://www.space.com/23685-neutrino-detector-extraterrestrial-particles-breakthrough-images.html









Edited by +Protagorist - 24-Nov-2013 at 23:44
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #164 Posted: 29-Nov-2013 at 17:33
Кометата ИСОН „изгоре“ од Сонцето

петок, 29 ноември 2013

Кометата ИСОН сепак не ја преживеа „блиската средба“ со Сонцето. Астрономите претпоставуваат дека се распаднала под влијание на екстремно интензивната соларна радијација и гравитациски сили

НАСА соопшти дека кометата која синоќа требаше да се доближи до Сонцето на само милион километри веќе не е видлива и нејзината судбина засега е непозната.

Според Дин Песнел, од Соларната опсерваторија на НАСА, ИСОН најверојатно експлодирал пред да ја достигне најблиската точка до Сонцето „Перихел“.
http://m.novamakedonija.com.mk/NewsDetal.aspx?vestId=27802&r=11&t=&p=true#.UpjATbuXu7o





»
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
gjoko View Drop Down
Senior Member
Senior Member


Joined: 18-Jun-2011
Location: kicevo
Online Status: Offline
Posts: 6554
  Quote gjoko Quote  Post ReplyReply #165 Posted: 29-Nov-2013 at 21:26
штета,вероватно во нашиот животен век нема да имаме друга прилика да гледаме `две` месечини одреден период
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #166 Posted: 30-Nov-2013 at 09:44

zosto se somnevas, ako ne dve mesecini togaj posekako dve sonca, o_O

ne e sporno deka ke imame i globalen ognomet, se ceka samo na rabotna viza za taa kometa, vprocem na nea site i cekaat, iako za sekoja Edna ima tenzii so ogled deka sekoja e odrereden telal a ko glasnik se sporeduva i so postoeckite prorostva kako bi se prevtasale promenite i narod bi se podgotvil za niv, iako moe mislenje e deka udar na kometa ili asteroid ke ne resetira na poarno bidejki ne ni se pisuva arno kako trgnalo so tehnokratijava polna izvitopereni evolutivni eksperimenti :O

abe ne dzabe rusite iniciraat vezbi i strategii, ili vatikan organizira opservatorii i vnatresni forumi http://kaapsevryheidsburgers.org/forum/index.php?/topic/917-astral-and-natural-disasters-comet-elinin/page__st__20
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #167 Posted: 30-Nov-2013 at 10:18

haha komentarite vo videovo uste pokreativni od istoto

se prasuvam sto tolku si macat glata so sekojdnevni pojavi, a duri i tie ge ftasale, pak ke brkaat skrieni muabeti, i ne deka gi nema, samo smesno deluva seta paranoja ili vozbuda po niv

edit:

бидејќи видеото или каналот етмскинат од тјуб еве ехо одмистото, штета без коментарите понего

https://ia902808.us.archive.org/9/items/youtube_UCFjOi1ZpZVErr8EYxg8t1dQ/BUSTED!%20%20%20NASA%20FOOTAGE%20HOAX%20ON%20COMET%20ISON%20PERIHELION!-cUFq_zOz37o.webm

https://www.dailymotion.com/video/x2r579o




Edited by +Protagorist - 03-Nov-2018 at 22:09
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #168 Posted: 01-Dec-2013 at 12:40


Што навистина се случи со Исон?

Судбината на кометата Исон и натаму е загатка за астрономите. Можно е делови од кометата да го преживеале минувањето покрај Сонцето, покажуваат денешните (29.11) снимки од сончевите сонди.

„Мал дел од кометата најверојатно преживеал и сега е на другата страна од Сонцето“, вели астрономката од Бохум, Сузане Хитемајтер. Наспроти тоа, експертот за комети на Европската вселенска организација Еса, Герхард Швем, е на мислење дека Исон е уништена во текот на приближувањето до Сонцето.

„Во близина на Сонцето не се виде ништо. Ако преживеала, ќе мораше да се види“, изјави Швем денеска, повикувајќи се на снимките од сателитите Проба-2 и СДО. Она што се гледа на снимките на сончевата сонда Сохо, според Швем, би можела да биде прашина.

Вчера американските научници оценија дека кометата се распаднала при минувањето покрај Сонцето. Астрономите претпоставуваат дека Исон се распаднала под влијание на екстремно интензивната соларна радијација и гравитациски сили. Според Дин Песнел, од Соларната опсерваторија на НАСА, Исон најверојатно експлодирала пред да ја достигне најблиската точка до Сонцето.

Што се случило со Исон ќе се знае конечно на почетокот на декември, претпоставува Швем. „Ако и по десет дена на снимките има нешто видливо, тогаш кометата преживеала“, изјави тој.

Кометата Исон беше откриена во септември 2012 година од страна на двајца руски астрономи аматери. Таа ги фасцинираше научниците поради тоа што датира од пред повеќе д 4,5 милијарди години, односно стара е колку и Сончевиот систем.

http://www.dw.de/што-навистина-се-случи-со-исон/a-17261821

HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
gjoko View Drop Down
Senior Member
Senior Member


Joined: 18-Jun-2011
Location: kicevo
Online Status: Offline
Posts: 6554
  Quote gjoko Quote  Post ReplyReply #169 Posted: 01-Dec-2013 at 12:48
Originally posted by +Protagorist


zosto se somnevas, ako ne dve mesecini togaj posekako dve sonca, o_O

ne e sporno deka ke imame i globalen ognomet, se ceka samo na rabotna viza za taa kometa, vprocem na nea site i cekaat, iako za sekoja Edna ima tenzii so ogled deka sekoja e odrereden telal a ko glasnik se sporeduva i so postoeckite prorostva kako bi se prevtasale promenite i narod bi se podgotvil za niv, iako moe mislenje e deka udar na kometa ili asteroid ke ne resetira na poarno bidejki ne ni se pisuva arno kako trgnalo so tehnokratijava polna izvitopereni evolutivni eksperimenti :O

abe ne dzabe rusite iniciraat vezbi i strategii, ili vatikan organizira opservatorii i vnatresni forumi http://kaapsevryheidsburgers.org/forum/index.php?/topic/917-astral-and-natural-disasters-comet-elinin/page__st__20


Ова ми беше муабетот,дека кометата изгорела барем во најголем дел па спектаклот на небото или ќе го нема или ќе биди мал
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #170 Posted: 02-Dec-2013 at 15:47


да ако имаше спектакл до сега ќе бевме и сведоци за него, но ете се прелажаа сите бар околу тоа, иако кометата го преживеа рандевуто со сонцето, еве кончено и признание од наса

да не ги постирам тука сликите истите од видеото горе одете на линкот за нив

Comet ISON May Have Survived

Continuing a history of surprising behavior, material from Comet ISON appeared on the other side of the sun on the evening on Nov. 28, 2013, despite not having been seen in observations during its closest approach to the sun.

As ISON appeared to dim and fizzle in several observatories and later could not be seen at all by NASA's Solar Dynamics Observatory or by ground based solar observatories, many scientists believed it had disintegrated completely. However, a streak of bright material streaming away from the sun appeared in the European Space Agency and NASA's Solar and Heliospheric Observatory later in the evening. The question remains whether it is merely debris from the comet, or if some portion of the comet's nucleus survived, but late-night analysis from scientists with NASA's Comet ISON Observing Campaign suggest that there is at least a small nucleus intact.

Throughout the year that researchers have watched Comet ISON – and especially during its final approach to the sun – the comet brightened and dimmed in unexpected ways. Such brightness changes usually occur in response to material boiling off the comet, and different material will do so at different temperatures thus providing clues as to what the comet is made of. Analyzing this pattern will help scientists understand the composition of ISON, which contains material assembled during the very formation of the solar system some 4.5 billion years ago.

http://www.nasa.gov/content/goddard/comet-ison-may-have-survived/

HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #171 Posted: 03-Dec-2013 at 02:41


]...

By late Thursday, the comet showed signs that it was still alive and well, or so it seemed.

“It now looks like some chunk of ISON’s nucleus has indeed made it through the solar corona, and re-emerged,” Battams said in an interview with CNN’s Amanda Barnett on Friday. “It’s throwing off dust and (probably) gas, but we don’t know how long it can sustain that.”

He maintained that it would take a few days of observations to get a feel for how ISON made out on its one-way ticket to perihelion.

“Now it has emerged and started to brighten, we need to observe it for a few days to get a feel for its behavior,” Battams noted.

With that being said, today it is clearer that ISON did in fact not survive its ordeal with the sun.

It is evident that the sun’s ferocity was more than the comet could handle, receiving a fatal blow from its perihelion. What is left from the once great and powerful is just a headless dusty ghost of a comet.

When NASA’s Solar Dynamics Observatory caught the last glimpse of ISON fading behind the sun, it was hours before the space agency’s SOHO spacecraft picked it up on the other side. Apart from appearing to survive the encounter, the comet also seemed to make a hairpin turn around the sun, appearing to brighten up and forming a fan-shaped tail.

The reemergence of the comet left many feeling optimistic that ISON would live to fight another day. But by Sunday, Dec 1, experts were painting a pretty clear picture of what really happened. Instead of forming a new zombie-like state, the comet had actually disintegrated and left in its wake just the glowing ghostly remains of a once frozen ball of gas, dust and debris. New satellite imagery does indeed show the comet’s remains are fading fast as it continues its recession from the sun.

“I think for the most part it’s dead,” C. Alex Young, the associate director for science in the heliophysics division at NASA’s Goddard Space Flight Center in Greenbelt, Md, told Kenneth Chang of the NY Times. “The folks are finally pretty confident that’s the case.”

“I really don’t think there’s a whole lot left,” added Battams. “I’m very disappointed for the public, because we’re not going to see this beautiful object in the Northern Hemisphere skies.”

Enthusiastic astronomers were hoping for a spectacular showing of ISON post-perihelion. But it now looks as if there will be no flashy sky show for millions of backyard space enthusiasts.

Experienced astronomers might be able to capture some of the fading ghostly remains in the pre-dawn sky in the coming days and weeks, but there willbe no chance of a naked-eye encounter, according to a statement on spaceweather.com

....

http://www.redorbit.com/news/space/1113016710/ison-does-not-survive-perihelion-now-ghost-comet-120213/

сигурно е убаво чувството да се потфати сончевиот абер кој го закачила кометава, па макар и преку телескоп


HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #172 Posted: 04-Dec-2013 at 18:16

Челјабинскиот метеорит покажа дека ризиците за Земјата се поголеми од претходно прогнозираните

Челјабинскиот метеорит, кој минатиот февруари падна во централниот дел на Русија, повредувајќи над 1.600 лица и предизивкивајќи паника кај астрономите, бил многу помоќен отколку што досега сметаа научниците, покажуваат две најнови истражувања објавени во „Сајнс“ и „Нејчр“.Метеоритот имал дијаметар од 19 метри и тежина од 11 тони. Тој навлегол во атмосферата на Земјата со брзина од 19 километри во секунда, што е побрзо од досегашните мерења.Експлозијата на небесното тело на 15 февруари, се случи на околу 30 километри од густо населениот град Челјабинск. Таа беше моќна колку 500 килотони тротил, односно над 30 пати посилна од атомската бомба над Хирошима. Според некои проценки силата на експлозијата била еднаква на 40 бомби од типот кој бил употребен во Хирошима.Во кулминацијата на експлозијата огненото јадро било околу 30 пати посветло од Сонцето и предизвикало големо количество на ултравиолетово зрачење, тврдат научниците во три статии, кои се објавени во двете научни списанија.Ударниот бран од метеоритот ги скршил прозорците на 4.700 згради, а метеоритскиот дожд беше набљудуван во пет руски области, Тјоменски, Свердловсми, Челјабински, Кургански и Башкирија.За време на распаѓањето на метеоритот неговите мали честички се движеле во просек со брзина од 30 километри во секунда и од таа причина на лицата, кои се наоѓале сто километри од уривањето на остатоците, тие им изгледале посилни од Сонцето.Само на територијата на Челјабионс се откриени делови од метеоритот со вкупна тежина од четири до шест тони. Најголем дел беше пронајден во октомври од езерото Чербакул и тој беше со тежина од 650 килограми.Научниците собрале стотици снимки од мобилни телефони, од безбедносни камери или од видеокамери, со цел да го анализираат метеоритот. Според научниците, кои анализирале остатоци од него, тој летал сам 1,2 милиони години, но претходно бил дел од поголемо небесно тело, кое се распаднало на два дела под влијание на гравитацијата на Земјата, при претходното преминување покрај неа.Според научниците Челјабинскиот метеорит помогнал во согледувањето на сличните опасности, кои и се заканувата на Земјата, како и во преоценката на бројот на објектите, кои се движат околу нашата планета и од Сончевиот систем. Досега се сметаше дека има околу 500 такви објекти, кои се сметаат за опасност за Земјата, но сега експертите предупредуваат дека нивниот број може да изнесува дури 20 милиони во Сончевиот систем.

http://a1on.mk/wordpress/archives/233186




Edited by +Protagorist - 03-Nov-2018 at 22:17
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
gjoko View Drop Down
Senior Member
Senior Member


Joined: 18-Jun-2011
Location: kicevo
Online Status: Offline
Posts: 6554
  Quote gjoko Quote  Post ReplyReply #173 Posted: 05-Dec-2013 at 01:21
     
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #174 Posted: 25-Dec-2013 at 12:56


HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #175 Posted: 12-Jan-2014 at 01:35

најверојатно ваквите портали се директно врзани и за сончевите ерупции, односно ерупциите влијаат на нив, но како тоа само пепе и микроби знаат  

http://www.tesis.lebedev.ru/en/active_areas.html?m=1&d=8&y=2014

08 јануари 2014 - Снимена експлозија на Сонцето, стигнува геомагнетна бура

Соларниот сателит на НАСА, снимил голема експлозија на Сонцето која се случила во огромната група пеги означени како АР 1944

Во прашање е најголемата група сончеви пеги која ја прикажува оваа огромна соларна експлозија.

Оваа група пеги која моментално се наоѓаат на средината на Сонцето кога тоа се набљудува од Земјата, е една од најголемите кои се забележани во последните десет години.

Експертите предвидуваат дека оваа соларна експлозија ќе започна геомагнетна бура во магнетното поле на Земјата кога бранот соларна плазма ќе дојде до земјата во наредните неколку денови. [1]

Sun Unleashes 1st Major Solar Flare of 2014

Tuesday's big flare was an X1.2-class solar event on the scale used to classify sun storms. It occurred at 1:32 p.m. EST (1832 GMT) and came just hours after an M7.2-class flare. Space weather officials at the the Space Weather Prediction Center overseen by NOAA are expecting the flare to spark geomagnetic storms in Earth's magnetic field when a wave of super-hot solar plasma associated with the flare - known as a coronal mass ejection - reaches Earth in the next few days.

[Photos: The Biggest Solar Flares of 2014]

"This is the first significant flare of 2014, and follows on the heels of mid-level flare earlier in the day," NASA spokeswoman Karen Fox of the agency's Goddard Space Flight Center in Greenbelt, Md., wrote in a statement. "Each flare was centered over a different area of a large sunspot group currently situated at the center of the sun, about half way through its 14-day journey across the front of the disk along with the rotation of the sun."

X-class solar flares are the most powerful solar storms on the sun. Mid-level storms are dubbed M-class events and can supercharge Earth's northern lights displays, with weaker C-class flares rounding out the top three.

When aimed directly at Earth, the strongest X-class solar flares can pose a risk to astronauts in orbit and interrupt communications and navigation satellite operations.  [1]


HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #176 Posted: 12-Jan-2014 at 13:43


just enjoy the show LOL можеби и од спунт [1]

Eric Dollard: The Sun Is Not What We Have Been Told (2013)  трезвен нус ефект од самоувереноста на ајнштајн [1]


Eric Dollard reveals 3 secrets about the Sun.

Eric Dollard has done over 4 years of research on the Sun at Sonoma State University before his lab was taken from him. Here he reveals astonishing truths about the sun never before heard in such frank and straight speak.

Eric Dollard is the Yoda of electricity and a modern day wizard. His accomplishments are far more impressive than I had initially thought. I have posted a video but there is far more I shall release. Eric speaks truth to power and shatters lies with every word he speaks.

If Nikola Tesla were alive today ...

Would you believe in his dream to provide limitless energy to the world?
Would you tell all your friends about his work?
Would you donate to help him rebuild his lab after the bankers burned it down?
We all have this opportunity now today with a modern day Tesla.

[ Eric Dollard's crowdfunding project is now defunct. I recommend visiting http://aetherforce.com/?from=disinpho for up to date news on other groundbreaking energy research ]

Eric Dollard has done truth to power for 45 years and dared to go where no scientist since Tesla has gone. As his reward Eric is now living out of his car out in the desert. Eric has endured severe trials at the hands of the powers that be.
Tesla had his lab burned down by the bankers. Eric Dollard has had every single one of his labs taken from him and destroyed, eight in total!
Eric has had his notes burned, his taped lectures withheld and even the manuscript he wrote for a book taken by a president of a "Tesla society"
Eric has "done more on food stamps" than others have done with millions according to one leading alternative sciences investor.
Eric's last lab was an early quake detection system that gave a full 48 hours of warning and detected two major quakes in California and In Japan. It was taken from him, all the gear confiscated, all of Eric's personal property was taken and even his dog was stolen from him.
What would happen if we, the people supported the work of Eric Dollard?

Vindicate Tesla, Save the work of Eric Dollard

Power Transmission via radio. phones that last 10-100 times longer
Earth Quake Early warning systems
Electricity without wires.
As a fifteen year old he got his first job with Americas biggest Radio corporation RCA, as a 16 year old he graduated high-school as a full fledged engineer and began working for Bell Labs and then went on to conquer every technical challenge the US Navy threw at him. Eric Dollard is without a doubt the Greatest Hacker Alive, much as Tesla was the greatest Hacker who ever lived.

Eric Dollard has dedicated his life to discovering scientific truth to better humanity. He succeeded beyond all expectations and even surpassed Nikola Tesla. His reward has been tyranny and poverty.

The work of Eric Dollard was the very pinnacle of any available material. As I got closer to his work I began to wonder what he was up to. I was shocked and horrified to learn that he was now homeless. His last lab having been destroyed and all his work stolen. They even took his dog this time. Eric is a true champion of truth and a warrior scientist if there ever was one. It is a miracle he is still alive. The story of Eric Dollard is the story of humanity.

Eric has been working hard to get this critical information to the public.

What We Need & What You Get

Eric was wrongly evicted from a facility that he inherited from a friend and turned into a wireless electrical transmission station. Eric is adamant about suing those who embezzled and defraud him. Thus legal services will be required to get the facility, his gear and his notes. Eric knows the court system is rigged so he doesn't want to go down that road but at the very least he would like to consult with an attorney.
Eric's presentations and a book he wrote are being held for ransom by the San Francisco Tesla society. Eric wants his work back and made available to the public. Legal services will be again required.
A beatup toyota corolla and the desert is no home for a truly great scientist. Eric needs a new Lab.

There are active agents of suppression working against people like Eric Dollard and Tesla before him. These agents are shadowy and have great power. They can shatter the best laid plans of the individual. My hope is that we the people working together can triumph over them. Those that don't believe that such powers exist should look for another worthy campaign to aid. Those looking at this as an investment, look elsewhere as this is not a mere charity campaign but a bold declaration of defiance to the powers that be



Edited by +Protagorist - 02-Nov-2015 at 23:35
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #177 Posted: 12-Jan-2014 at 17:00

Чоеков е нешто помеѓу оштроумноста на Тесла [1] и инаетот на Рајх [1]

еве нешто и од неговиот оштроумен инает



http://www.gestaltreality.com/energy-synthesis/eric-dollard/and-in-the-beginning-versors-by-e-p-dollard-2012/

Eric Dollard is the only man known to be able to accurately reproduce many of Tesla’s experiments with Radiant Energy and wireless transmission of power. He is able to do this because he understands that conventional electrical theory only includes half of the story.

Nikola Tesla single-handedly gave us the technology that has created our entire power grid and communications systems. As the pinnacle of the evolution of the Victorian scientists Tesla aspired to create a system that would light up the entire world without wires. In the end a combination of his own wreck less decisions and the agenda of the moneyed elite brought upon his downfall and banishment. Undaunted by this, Eric set out to recreate all of Tesla’s technology and to design a system of self powering, faster than light and lossless communication.

Eric was successful in rediscovering Tesla’s core work, yet he is now living out in the desert.

He has done over 4 years of research on the Sun at Sonoma State University before his lab was taken from him. Here he reveals astonishing truths about the Sun never before heard in such frank and straight speak.

Marginalized and forgotten

Eric has been marginalized and forgotten but he has not given up, he is still trying to pass on his knowledge so that others might recreate his work and Tesla’s work.

He hopes that someone can continue the work in his place but imagine if we could give Eric the chance to finish his mission.

Read more on Eric Dollard:

ericdollard.com
peswiki.com
jinnwe.com
Publications:

Books

The following books were scanned and published as pdf with official permission from Eric Dollard.

Eric P. Dollard - Theory of Wireless Power - 69 pages (#B0082) - This paper contains many essential formulae and supporting data necessary to understand the Transmission of Electrical Energy Without Wires. Discusses and diagrams the Marconi Wireless station based at Bolinas, California, circa 1919. Unlike many erroneous modern theories of how Tesla achieved his goal, this paper is based on real work with a Tesla Magnifying Transmitter. Illustrated with charts & diagrams.
Eric P. Dollard - Introduction to Dielectric & Magnetic Discharges in Electrical Windings (1982) – 38 pages (#B0020) - Eric Dollard’s work on the relationship of the dielectric and electromagnetic aspects of electricity is the most important breakthrough in modern day electrical research providing real avenues of research into Tesla’s secrets. ContainsELECTRICAL OSCILLATIONS IN ANTENNAE & INDUCTION COILS by John Miller, 1919, one of the few articles containing equations useful to the design of Tesla Coils.
Eric P. Dollard - Condensed Intro to Tesla Transformers - 70 pages (#B0018) - An abstract of the theory and construction techniques of Tesla Transformers written by one of the most brilliant modern day researchers into High Frequency Electricity as pioneered by Tesla and Steinmetz. Contains the article CAPACITY by Fritz Lowenstein, assistant to Tesla in his research.
Eric P. Dollard - Symbolic Representation of the Generalized Electric Wave - 86 pages (#B0080) - Extension of the theory of versor operators and imaginary numbers to represent complex oscillating waves such as those encountered in the researches of Nikola Tesla and everywhere in Nature. Theory of Free Electricity produced by rotating apparatus such as variable reluctance devices. Waves flowing backwards in time are explored.

Eric P. Dollard - Symbolic Representation of Alternating Electric Waves - 53 pages (#B0079) - Introduction to the FOUR QUADRANT THEORY of Alternating Current which allows engineering of Tesla’s inventions. Provides a more complete understanding of the use of versor operators (degrees of rotation), necessary to the understanding of the rotating magnetic field. The process of the production of electrical energy using the neglected QUADRANTS OF GROWTH is brought about via the use of these operators.
Eric Dollard - Free-Energy Research – a collection of contributions to The Journal of Borderland Research - 28 pages (#B0460) - This new book contains conributions Eric has made to the Journal of Borderland Research. It contains the key to unlosk the Etheric aspects to Tesla technology. Includes: Functional Thinking- an Interview with Eric Dollard, The Transmission of Electricity, Understanding the Rotating Magnetic Field, Introduction to Dielectricity & Capacitance. Contains mentions of Wilhelm Reich, Viktor Schauberger, Nikola Tesla and Eric’s thoughts on magneto-dielectric energy (which manifests in golden mean ratio form, resembling organic living forms). Available from http://www.borderlands.com/ and http://www.tuks.nl/pdf/Eric_Dollard_Document_Collection/

Documentaries

Tesla’s Longitudinal Electricity – A laboratory demonstration video with Eric P. Dollard & Peter Lindemann – 60 minutes (#V0005)
Transverse & Longitudinal Electric Waves – A laboratory demonstration with Eric P. Dollard – 50 minutes (#V0004) - available from http://www.borderlands.com/




Edited by +Protagorist - 15-Apr-2017 at 21:44
HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #178 Posted: 12-Jan-2014 at 20:15

обзервациите на Кире полесно ги објаснува Стефан

HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #179 Posted: 16-Jan-2014 at 07:17



дополнување на пост 174 погоре

Magnetic Portals Connect Earth to the Sun

...

There are many unanswered questions: Why do the portals form every 8 minutes? How do magnetic fields inside the cylinder twist and coil? "We're doing some heavy thinking about this at the Workshop," says Sibeck. 

Meanwhile, high above your head, a new portal is opening, connecting your planet to the sun.

...

http://science1.nasa.gov/science-news/science-at-nasa/2008/30oct_ftes/

HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
+Protagorist View Drop Down
Senior Member
Senior Member
Avatar

Joined: 01-Nov-2012
Online Status: Offline
Posts: 3516
  Quote +Protagorist Quote  Post ReplyReply #180 Posted: 07-Feb-2014 at 05:34


колку што има езотерични претпоставки за соларниот максимум [1] претпоставувам исто толку ќе имаи за поларниот на земјава т.е. флипот на половите посекако би требало да влијае на нас и индиректно економски и директно органски, колку и како тоа допрва би требало да видиме доколку и навистина во моментов сме сред еден ваков циклус кој се повторува на секои 100 илјади години [1]

но најверојатно че го добиеме она што најмалку го очекуваме

...

There is actually a third type of pole shift, where planet Earth’s rotation reverses. This would mean that the directions of sunset and sunrise would reverse, East would become West and West would become East, as described in the Bible and other ancient texts. This is not discussed much in the modern era, primarily because a reversal of rotation is not possible without an outside agent that would either destroy the planet, or remove us from our pleasant orbit around the Sun.

http://poleshift.com/


HaјсилнoтoOpужјe е вo caмитeHac cинaпoвo3pнo co НaдeжВepaЉубoв
Back to Top
 Post Reply Post Reply Page  <1 7891011 17>

Forum Jump Forum Permissions View Drop Down



This page was generated in 0.391 seconds.

Copyright ©2007 - 2019  build.mk

Коментарите на форумот претставуваат лично мислење на нивните автори и не претставуваат официјален став на build.mk.